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Abstract

The thermal diffusivity of the metastable undercooled austenite is relevant for the quantitative analysis of the carbon and low-alloy steel
quench. The standard laser-flash method requires prior thermal equilibrium between the sample and the furnace, which may not be possible to
achieve without allowing the metastable phase to transform. Nevertheless, depending upon the steel’s hardenability, the thermal transient due to
a laser pulse may be much shorter than a cooling transient sufficiently steep to prevent the transformation of the austenite. In one such case,
flash measurements were performed during continuous sample cooling and the thermal diffusivity of the metastable austenite was determined by
using an extension of the standard analytical model. The adopted analytical model and data reduction procedure are described and the limitations
and uncertainties of this method are discussed, also with the aid of a non-linear numerical simulation. The measured thermal diffusivity of the
undercooled low-alloy austenite decreases linearly from 5.4 ·10−6 m2 s−1 at 1133 K to 4.3 ·10−6 m2 s−1 at 755 K; this trend is in broad agreement
with one previous set of measurements upon a low-alloy undercooled austenite and with a large number of previous standard measurements upon
stable (high-alloy) austenitic stainless steels.
© 2007 Elsevier Masson SAS. All rights reserved.
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Introduction

The pointwise microstructure and the subsequent in-service
mechanical properties of a steel component depend primarily
upon its heat treatment. Among the steel heat treatments, the
quench, being a transient process, is most sensitive to the cool-
ing rate, and consequently to the surface heat transfer phenom-
ena, to the component size and shape, and to the steel’s thermal
diffusivity1 and specific heat capacity [1].

The early quantitative methods to estimate quench results
[2,3], that are still employed in the industry for a first esti-
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mate, were based upon analytical solutions of the heat flux
inside geometrically simple bodies. The steel’s thermophys-
ical properties and the surface heat-transfer coefficient were
considered constant and the pointwise as-quenched hardness
was assumed to depend solely upon a parameter (a cool-
ing rate or an half-cooling time) obtained from each cool-
ing curve. In these methods only a rough (effective) ap-
proximation of the steel’s thermophysical properties could
be introduced, because their dependence upon the tempera-
ture and upon the phase transformations had to be neglected;
therefore, accurate and specific measurements were need-
less.

On the contrary, present thermo-metallurgical, non-linear,
transient, finite-elements models allow to perform coupled
simulations of the heat conduction and of the metallurgical
phase transformations [4,5]; therefore precise temperature- and
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Nomenclature

A constant temperature term defined in Eq. (10) . . K
B cooling rate defined in Eq. (5) . . . . . . . . . . . . . K s−1

C heat capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . J K−1

cp specific heat capacity . . . . . . . . . . . . . . . J K−1 kg−1

D heat loss variation parameter defined in Eq. (20)
E surface heat flux (emissive power) . . . . . . . W m−2

Erf error function
f (. . .) dimensionless analytic function
k thermal conductivity . . . . . . . . . . . . . . . W m−1 K−1

L sample thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
Lu unilateral Laplace transform operator
q absorbed pulse energy per surface unit . . . . . J m−2

Qa absorbed pulse energy . . . . . . . . . . . . . . . . . . . . . . . . J
Qi incident pulse energy . . . . . . . . . . . . . . . . . . . . . . . . . J
R interpolation root mean square residual . . . . . . . . K
S section area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2

s complex Laplace variable . . . . . . . . . . . . . . . . . . s−1

SN partial sum (until the N th term of a series)
T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
�T spatial average temperature . . . . . . . . . . . . . . . . . . . K
��T spatial and temporal average temperature . . . . . . K
t time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
T0 initial temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . K
t0 pulse time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
tc characteristic time defined in Eq. (5) . . . . . . . . . . . s
Tf furnace temperature . . . . . . . . . . . . . . . . . . . . . . . . . K
tp laser pulse duration . . . . . . . . . . . . . . . . . . . . . . . . . . s
u(. . .) unitary step function
x position inside the sample . . . . . . . . . . . . . . . . . . . . m
Z cooling-related spatial temperature difference

z(L/2) − z(0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K

z cooling-related spatial temperature term defined in
Eq. (5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K

Greek symbols

α thermal diffusivity . . . . . . . . . . . . . . . . . . . . . . m2 s−1

δ thin layer thickness . . . . . . . . . . . . . . . . . . . . . . . . . . m
δ(. . .) Dirac δ distribution
δE small variation of E . . . . . . . . . . . . . . . . . . . . W m−2

δt small variation of t . . . . . . . . . . . . . . . . . . . . . . . . . . . s
�T pulse-related temperature increment, defined in

Eq. (7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
�t duration of relevant pulse-related effects . . . . . . . . s
ε emissivity
εt total linear thermal and volumic expansion
θ Laplace transform of T . . . . . . . . . . . . . . . . . . . . . . K
Π(. . .) rectangle function (equal to 1 in [−1/2,1/2], to 0

elsewhere)
ρ density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg m−3

σ Stefan–Boltzmann constant . . . . . . . . . W m−2 K−4

τ dimensionless time t/tc
τ̃ dimensionless time (t − t0)/tc
χ dimensionless position x/L

Subscripts

II solution of Eq. (2)
III solution of Eq. (3)
VI solution of Eq. (6)
in input to the numerical simulation
out output from the numerical simulation

Superscripts
◦ derivative in respect to t
′ derivative in respect to x
phase-dependent thermophysical properties can be employed in
order to seek more accurate results.2

Because these data are seldom available for a specific steel
grade, it is useful to evaluate which property is more influent
upon the quench process, and therefore is worth to be more ac-
curately assessed. If the Biot number3 of the quench process
is small (lower than 0.1), the temperature differences inside
the steel component are negligible and the cooling curve de-
pends mainly upon the boundary conditions and the specific
heat capacity. On the contrary, if the same number is large, rel-
evant temperature differences occur inside the component and
the heat flux is mainly determined by the steel’s thermal diffu-
sivity [6,7]. A problem characterized by a small Biot number
may not actually require a finite-elements model, because it

2 Whereas only the thermophysical properties are discussed here, the kinetic
model of the metallurgical transformations may have an even deeper influence
upon the precision of a thermo-metallurgical simulation.

3 Defined as Bi = h · L/k, being h the surface heat transfer coefficient, k the
thermal conductivity, and L a representative linear dimension of the body.
can be satisfyingly analyzed by a simple lumped capacitance
model and it can be controlled by measuring the surface tem-
perature, the as-quenched microstructure being sensibly homo-
geneous in the volume. The opposite considerations can hold
if the Biot number is large. Therefore, the thermal diffusivity
is usually the more influent thermophysical property in those
quench processes that can most usefully be analyzed by finite-
element thermo-metallurgical models.

Moreover, in any effective steel quenching process a large
fraction of the component’s volume necessarily consists of
metastable undercooled austenite during most of the process
duration. Thus, the thermal diffusivity of the metastable (un-
dercooled) austenite is particularly relevant for the numerical
simulation of the steel quench.

Yet, the standard thermal diffusivity measurement methods,
and particularly the flash method [8], require the specimen to be
initially held at constant temperature and in thermal equilibrium
with the specimen holder and the testing ambient (furnace).

As it regards the measurement of undercooled austenite, de-
pending upon the kinetic of the phase transformation (i.e. upon
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the steel’s hardenability [1]), upon the furnace’s control sys-
tems and upon the desired measurement temperature, it can
be possible to austenitize a steel specimen in the measurement
furnace itself and then to quench it to the measurement temper-
ature, but it may be very difficult or impossible to achieve the
required initial equilibrium condition while avoiding transfor-
mation.

Therefore, the thermal diffusivity of the undercooled austen-
ite has been measured by a non-standard laser-flash method,
which was derived by the standard one by dropping the prior
equilibrium requirement.

Experimental

The alloyed, medium-carbon, ISO 1.2738 steel grade4 [9]
was chosen because it is usually employed for the production
of very large pre-hardened blooms [10,11]. The heat treatment
of these blooms is characterized by a large Biot number and is
relevant to control mechanical properties; thus, finite-element
analyses need to be performed for die design purposes. More-
over, this steel shows a very high hardenability, that allowed to
effectively quench the samples by cooling them inside the mea-
surement furnace, and a large separation between the pearlitic
and bainitic transformation temperature ranges, that allows to
retain a fully austenitic structure for more than one day at tem-
peratures between about 720 and 770 K (Fig. 1, [12–15]).

A steel sample disk, having a diameter of 9.9 ·10−3±10−5 m
and a thickness L of 2.47 · 10−3 ± 10−5 m, was obtained from
a commercial bloom (Table 1) and austenitized at 1133 K for
1/2 hour.5 Thereafter, the disk was allowed to cool to 755 K,
held at this temperature for about one hour, and finally allowed
to cool to room temperature (Fig. 1). Flash measurements were
performed at the austenitizing temperature (after the comple-
tion of the austenitization), during the cooling stage between
1133 and 755 K, and during the 755 K holding stage (after the
end of the furnace transient).

The thermal cycle and the flash measurements were per-
formed inside a vacuum furnace; during the constant-temper-
ature stages the sample-holder’s temperature was closed-loop
controlled, whereas during the cooling stages the sample was
cooled by the natural irradiation, i.e. the heat from the sample
itself, from the sample-holder and from other furnace parts was
dissipated to the water-cooled external furnace walls (trough in-
termediate thin metal screens).

The flash measurements were performed by laser pulses,
whose duration was 600 µs. The pulse instant was accurately
recorded by a photodiode. The time-temperature curves (ther-
mographs) were acquired at 400 Hz from a thermocouple
welded to the sample, with the recording beginning 0.5 s before
the laser pulse and lasting 2.5 s. A digital filter was employed to
remove from the thermographs some disturbances. During the

4 Similar to the AISI P20 grade, with a 1 wt% nickel addition.
5 The sample’s metallurgical condition prior to the austenitization, some

standard flash measurements performed before the austenitization, and other
standard and non-standard measurements performed upon other samples of the
same steel, were previously reported [16].
Fig. 1. Approximate sketch of the sample’s actual cooling curve and of the
corresponding curve obtained by neglecting the 755 K holding stage (dashed),
superimposed to the steel’s CCT (Continuous Cooling Transformation) dia-
gram.

Table 1
Chemical composition of the employed alloy steel

C Cr Mn Ni Mo Si P S

0.388 2.132 1.492 0.969 0.192 0.214 0.009 0.007

holding stages, measurements were performed both by keeping
the heating system on, or by switching it off about 1 s before the
laser pulse and for the duration of the measurement (in order to
reduce the intensity of the disturbances).

The precision of the measurement apparatus was verified by
performing two successive series of standard flash measure-
ments [8] on an Armco iron sample, with the same data ac-
quisition and filtering procedures. The difference between the
measured diffusivity values and the literature data [17] in the
temperature range from 297 to 1004 K is lower than 5%, that
is the repeatability of standard laser flash measurements [8]; at
higher temperatures the same difference is larger, and therefore
the experimental apparatus is probably less precise, although
the comparison is less certain due to the proximity of the mag-
netic and phase transitions (Fig. 2).

The sample’s post-cooling microstructure, assessed by opti-
cal metallography after a Nital etch [18], was martensite. More-
over, the previous austenitic grain boundaries were evidenced
by the Bechet–Beaujard etch [19,20]; the mean austenitic grain
size, measured by using the three-circle intersection proce-
dure [21], was 12 µm.

Whereas in the reported sample, and in other ones tested
with similar schedules, the pearlitic and bainitic transforma-
tions were avoided, one attempt to perform standard flash mea-
surements while holding another sample at 923 K resulted in a
partially pearlitic final microstructure, implying that this sam-
ple was transforming before and during these measurements;
therefore they were discarded.

Analytical model

Typical thermographs obtained from standard and non-
standard measurements are compared in Fig. 3. Whereas the
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Fig. 2. Thermal diffusivity of Armco iron. Literature values and standard laser
flash measurements performed with the present apparatus.

former (Fig. 3(a)) is close to the standard analytical model orig-
inally introduced by Parker et al. [22], the latter (Fig. 3(b)) is
significantly different and may be described qualitatively as
the superposition of a contribution due to the energy pulse
upon a base curve pertaining to the sample cooling process.
Although both these contributions arise from transient phe-
nomena, the radiative heat exchange between the sample and
the furnace leads to a comparatively slow cooling of the sample
(e.g.: on a time scale of the order of 103–104 s in the present
experiment, mainly determined by the furnace), whereas the
observable effects of the laser pulse vanish in a compara-
tively very short time interval (e.g.: of the order of 1 s in the
present experiment). Moreover, because the purpose of the
measurements is to determine the sample’s diffusivity from
the effects of the laser pulse, the radiative heat exchange can
be regarded essentially as a disturbance. Therefore, it is suf-
ficient to adopt a model of the radiative heat exchange that
can satisfyingly fit the radiative cooling curve for a time in-
terval safely longer than the duration of the relevant laser
pulse effects, but still very short in respect to the time scale
of the sample cooling process. One such model is chosen
by assuming constant diffusivity and conductivity and by us-
ing a constant-heat-flux boundary condition. The experiments
and the non-linear numerical simulations described in the fol-
lowing chapters show that this approximation is sufficient for
the above mentioned purpose. Moreover, this choice does not
require any knowledge of the furnace characteristics, and it
allows a closed form analytical solution, that is derived here-
after.

It is assumed that the sample is a slab of thickness L, thermal
diffusivity α and thermal conductivity k, and that it is cooling
from an initial temperature T0 due to a constant outgoing sur-
face heat flux E at both its surfaces, both before and after an
ideal pulse of surface energy q is absorbed upon the first sur-
face. This one-dimensional model is described by the following
partial differential equation and boundary conditions:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ṫ = α · T ′′, x ∈ [0,L]
−k · T ′ = q · δ(t − t0) − E, x = 0, t � 0

−k · T ′ = E, x = L, t � 0

T = T0, t � 0

(1)

where T is the temperature, t is the time, x is the position in-
side the sample (comprised between 0 and L), a superscript dot
and an apex indicate the derivation in respect to t and x re-
spectively, δ(t) is the Dirac distribution, and t0 is the (positive)
instant when the energy pulse is absorbed.

It can be demonstrated that, if the functions TII and TIII sat-
isfy the following sets of equations:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ṪII = α · T ′′
II , x ∈ [0,L]

−k · T ′
II = −E, x = 0

−k · T ′
II = E, x = L

TII = T0, t = 0

(2)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ṪIII = α · T ′′
III, x ∈ [0,L]

−k · T ′
III = q · δ(t), x = 0

−k · T ′
III = 0, x = L

TIII = 0, t � 0

(3)

then, the function T defined by:

T (x, t) = TIII(x, t − t0) + TII(x, t) (4)

satisfies Eq. (1). Thus, the thermal transient TII satisfying
Eq. (2) can be regarded as the above-mentioned slow cooling
contribution to the sample thermal history T (x, t), whereas the
thermal transient TIII (satisfying Eq. (3) and translated in time)
can be regarded as the above-mentioned pulse-related contribu-
tion.6

The solution TII of Eq. (2), re-arranged from the literature
[23], is:

TII(t, x) = T0 + z(x) − B · t + B · tc · fII

(
t

tc
,
x

L

)
with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z(x) = Z · { 1
3 − ( 2·x

L
− 1

)2}
Z = B · tc · π2/8

B = 2·E·α
k·L

tc = L2

π2·α
fII(τ,χ) = 1

2 ·∑∞
n=1

(−1)n

n2 · exp
(−4 · τ · n2

)
· cos

(
n · π · (2 · χ − 1)

)
(5)

where tc is the sample’s characteristic time. After a brief tran-
sient described by the vanishing term fII, this solution pre-
dicts a constant cooling rate B7 and a constant parabolic tem-

6 It can be demonstrated that if the sample cooling was modeled by a radia-
tive or convective boundary condition the two contributions would not results
rigorously additive.

7 Because of this result, and because it is intended to describe only a rel-
atively short time interval, the present model can also be regarded as a local
linearization of the overall cooling curve.
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Fig. 3. Time-temperature thermographs. Standard flash measurement (a). Non-standard flash measurement performed during an uninterrupted sample cooling
process (b). Simulated standard (c) and non-standard (d) flash measurements. Acquired or simulated time-temperature points and interpolating curves.
perature gradient inside the sample, whose total magnitude is
z(b/2) − z(0) = Z.

The pulse transient described by Eq. (3) is physically similar
to the original Parker et al. model:

lim
δ→0

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ṪVI = α · T ′′
VI, x ∈ [0,L]

−k · T ′
VI = 0, x = 0

−k · T ′
VI = 0, x = L

TVI =
{

q/(ρ · cp · δ), x ∈ [0, δ]
0, x ∈ (δ,L]

}
, t = 0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(6)

provided that this latter model is arbitrarily extended by the
constant temperature T0 when t < 0. Nevertheless, whereas in
the proposed model, and therefore in Eq. (3), the pulse surface
energy q appears in a boundary condition, in the Parker et al.
model (Eq. (6)) it appears in the initial condition. Therefore,
contrary to the solution of Eq. (3), the original Parker et al. so-
lution cannot be rigorously translated in time and added to the
solution of Eq. (2).

A closed-form solution TIII of Eq. (3) is derived in the ap-
pendix and, in the point x = L, it is:

TIII(t, x) = �T · fIII

(
t

tc
,
x

L

)

with

⎧⎪⎪⎨
⎪⎪⎩

�T = q·α
k·L = q·S

C

fIII(τ,1) = 0, τ � 0

fIII(τ,1) = 2 ·
√

π
τ

·∑∞
n=0 exp

(−π2

τ
· (n + 1

2

)2)
, τ > 0

(7)

where �T is the asymptotic temperature increase due to the
pulse energy and can also be expressed by using the sample’s
total heat capacity C and section area S.



700 P. Matteis et al. / International Journal of Thermal Sciences 47 (2008) 695–708
For comparison, the extended Parker et al. solution, in the
same point, is:

TVI(t, x) = �T · fVI

(
t

tc
,
x

L

)
with{

fVI(τ,1) = 0, τ � 0

fVI(τ,1) = 1 + 2 ·∑∞
n=1(−1)n · exp

(−n2 · τ), τ > 0
(8)

Although it has not been demonstrated whether Eqs. (3) and
(6) are rigorously equivalent for t > 0, their respective solutions
TIII and TVI (Eqs. (7) and (8)) are numerically equal in the point
x = L and in the time interval relevant to the present work;8

therefore they will be used indifferently in these limits.
By introducing Eqs. (5) and (7) (or (8)) into Eq. (4), the com-

plete solution of the proposed analytical model (described by
Eq. (1)) is:

T (t, x) = T0 + z(x) − B · t + �T · fIII–VI

(
t − t0

tc
,
x

L

)

+ B · tc · fII

(
t

tc
,
x

L

)
(9)

If the initial cooling transient term fII can be neglected, the
initial condition T = T0 can be imposed at, and the time t can
be measured from, any arbitrary starting instant, e.g.: shortly
before the laser pulse instant; if moreover only the point x = L

is of interest, the solution reduces to the sum of a linear cooling
term and of the standard Parker et al. curve, i.e.:

T (t,L) ≈ A − B · t + �T · fIII–VI

(
t − t0

tc
,1

)
with

A = T0 + z(L) (10)

Furthermore, by integrating Eq. (9) in respect to x, it can be
demonstrated (Appendix A) that the spatial average sample
temperature �T is rigorously equal to:

�T (t) = 1

L
·

L∫
0

T (t, x)dx = T0 − B · t + �T · u(t − t0) (11)

where u(t) is the unitary step function. The relevant measure-

ment temperature ��T can be defined as the average sample tem-
perature in a relevant time interval �t during which the pulse
transient sensibly affects the sample temperature and is actually
measured; i.e.:

��T = 1

�t
·

t0+�t∫
t0

�T (t)dt = T0 − B · (t0 + �t/2) + �T. (12)

By calculating z(L) from the definition of z(x) given in Eq. (5)
and by introducing A as defined in Eq. (10), it results:

��T = A + π2

12
· B · tc − B · (t0 + �t/2) + �T (13)

8 Upon calculating the two function with a 64 bit precision, for τ comprised
in the 0 to 10 range, the maximum absolute difference is lower than 5 · 10−16.
Therefore, if the laser pulse instant t0 and the sample thickness
L are known, the quantities A, B , �T and tc can be obtained
by fitting the experimental data upon the curve given in Eq. (10)
in a time interval conveniently extended before and after the
pulse instant (although necessarily short in respect to the over-
all radiative cooling process), and the thermal diffusivity α and

the corresponding relevant sample temperature ��T can be cal-
culated, by using the definition of tc (given in Eq. (5)), and
Eq. (13), respectively, and by choosing a relevant �t value.

Experimental data reduction

Each thermograph was fitted with Eq. (10), using the min-
imum least square method and considering all the measured
data (Fig. 3). The minimum searching procedure of Lagarias
et al. [24], as implemented in a general-purpose computation
code [25], was employed to find the minimum of the least-
square residual as a function of the fitting parameters A, B ,
�T and tc .

This procedure requires a first estimation of the minimum,
that, for each thermograph, was calculated as follows. First es-
timates of A and B were obtained from the linear least-square
interpolation of the initial part of the thermograph, prior to the
laser pulse. First estimates of �T and tc were obtained by ap-
plying the standard half-time method [8] upon the difference
between the actual thermograph and the first estimate A − B · t
of the linear cooling contribution.

For the sake of homogeneity, this data reduction procedure
was applied also to the standard flash measurements; in these
cases it yields a cooling rate B close to zero and therefore
becomes almost equivalent to fitting the curve with the stan-
dard Parker et al. function. Moreover, the cooling rate B can
be assumed as an index of how much a specific measurement
deviates from the standard model.

The measurement temperatures ��T were calculated by choos-
ing �t = 5 · tc, which corresponds to an almost 99% rise of the
Parker et al. curve (Fig. 4(a)).

The calculated thermal diffusivities α and measurement tem-
peratures ��T are reported in Table 2, with the respective cooling
rates B .

Moreover, the ratio of the sample’s emissivity ε and total
heat capacity C was estimated, for each laser flash measure-
ment, by comparing the absorbed pulse energy Qa (equal to the
product of q and S) with the nominal incident pulse energy Qi

(known from the laser apparatus) and by recalling from Eq. (7)
that �T = q · S/C, i.e. by using the following equation:

ε = Qa

Qi

= q · S
Qi

≈ C · �T

Qi

(14)

These ε/C ratios are also reported in Table 2, as well as other
validity or precision parameters discussed thereafter.

Numerical verifications

A numerical simulations of a whole sample time-tempera-
ture history was performed as an aid to evaluate the uncertain-
ties deriving from some simplifying hypotheses employed in
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Table 2
Experimental laser flash measurements

Stage Heating ��T α B B · tc B · �t Z �T ε/C D R �T/R

K 10−6 m2 s−1 K s−1 K K K K K J−1 % K –

1133 K holding off 1131 5.67 0.50 0.05 0.27 0.07 1.02 0.10 – 0.10 11
1130 5.44 0.50 0.06 0.28 0.07 1.05 0.11 – 0.09 11

on 1135 5.41 0.02 0.00 0.01 0.00 0.95 0.09 – 0.11 8
1133 5.29 −0.07 −0.01 −0.04 −0.01 0.86 0.09 – 0.11 8
1135 5.39 0.11 0.01 0.06 0.02 1.10 0.11 – 0.10 11

Continuous cooling off 1121 5.36 0.67 0.08 0.39 0.10 1.00 0.10 2.42 0.08 13
1075 5.40 0.76 0.09 0.43 0.11 1.02 0.10 2.22 0.06 17
1026 5.01 0.66 0.08 0.41 0.10 1.07 0.11 2.09 0.08 14
977 4.97 0.56 0.07 0.35 0.09 1.11 0.11 1.94 0.09 12
923 4.77 0.44 0.06 0.29 0.07 1.15 0.12 1.75 0.10 12
886 4.67 0.39 0.05 0.26 0.06 1.21 0.12 1.68 0.08 15
834 4.47 0.31 0.04 0.21 0.05 1.26 0.13 1.52 0.05 23
768 4.39 0.25 0.04 0.18 0.04 1.35 0.14 1.36 0.06 24
754 4.25 0.22 0.03 0.16 0.04 1.37 0.14 1.33 0.03 41
722 4.15 0.20 0.03 0.15 0.04 1.42 0.14 1.25 0.06 25

755 K holding off 757 4.27 0.20 0.03 0.15 0.04 3.12 n.a. – 0.04 73
756 4.23 0.24 0.04 0.18 0.04 3.15 n.a. – 0.05 67
750 4.24 0.23 0.03 0.17 0.04 3.17 n.a. – 0.04 76

on 754 4.31 0.12 0.02 0.09 0.02 2.97 n.a. – 0.05 55
755 4.19 0.16 0.02 0.12 0.03 3.02 n.a. – 0.05 63
757 4.27 0.16 0.02 0.12 0.03 3.08 n.a. – 0.06 55

Holding or cooling stage, furnace heating system status, average temperature ��T , thermal diffusivity α, cooling rate B , temperature coefficient of the cooling process
initial transient B · tc , temporal and spatial temperature differences B ·�t and Z, pulse-related temperature increase �T , estimated ratio of emissivity and total heat
capacity ε/C, heat flux variation parameter D, thermograph interpolation root mean square residual R, effective signal-to-noise ratio �T/R.
the above described analytical model. Therefore, in the numer-
ical model, the diffusivity and the specific heat capacity are
considered functions of the temperature, the laser pulses are
modeled with rectangle functions, and the radiative heat ex-
change between the sample and the furnace is modeled with
the Stefan–Boltzmann law by considering the sample as a gray-
body and the furnace interior as a blackbody, and by noting that
the view factor is 1. The resulting one-dimensional model is:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρ · cp · Ṫ = ∂
∂x

(α · ρ · cp · T ′), x ∈ [0,L]
−α · ρ · cp · T ′ = P − ε · σ · (T 4 − T 4

f ), x = 0, t � 0

−α · ρ · cp · T ′ = ε · σ · (T 4 − T 4
f ), x = L, t � 0

T = T0, t � 0
(15)

with

P = ε · Qi

S · tp ·
∑
n

Π

(
t − t0n

tp

)

where σ is the Stefan–Boltzmann constant,9 P is the instanta-
neous adsorbed surface power due to the laser pulses, Π is the
rectangle function, tp is the duration of each laser pulse (equal
to 0.6 ms), t0n is the nth laser pulse instant, and Tf (t) is the
furnace cooling curve between 1133 and 755 K.10

9 Equal to 5.6704 · 10−8 W m−2 K−4.
10 Measured while performing a thermal cycle similar to the experimental one,
with a thermocouple instead of the sample.
The specific heat capacity was obtained from the literature,
by considering unalloyed austenite [26]. Because the simula-
tion does not take account of the thermal expansion, the density
was considered constant and equal to 7800 kg m−3. The dif-
fusivity was obtained from the overall result of the present
experiments (Eq. (25) below). The emissivity was estimated
as the average (equal to 0.100) of the values calculated from
each laser flash experiment; these values were obtained from
the above-mentioned ε/C ratios (Table 2) by neglecting the
wavelength dependency and by using the sample dimensions
and the above-mentioned density and specific heat capacity to
calculate C.

The model was solved by using a numerical method [27]
implemented in a general-purpose computation code [25]. The
sample thickness was discretized into 50 equal elements. The
simulation time steps were smaller than 0.12 ms during each
laser pulse and smaller than 1.25 ms for a duration of 2 s af-
ter each laser pulse. A simulated thermograph, with the same
sampling period and duration (before and after the laser pulse
instant) employed in the actual measurements, was calculated
for each simulated measurement. The pulse instants t0n were
chosen to perform 3 simulated (standard) measurements at the
initial temperature, a series of 8 simulated measurements dur-
ing the cooling process, and 3 simulated measurements at the
end of the same process.

One standard and one non-standard simulated thermographs
are reported in Fig. 3(c) and Fig. 3(d), respectively.
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Fig. 4. The non-dimensional functions fIII–VI(τ,1) and fII(τ,1) employed in
the analytical model (a and b).

Limitations and uncertainties

Limitations to the validity of the proposed data reduction
method arise from the differences between the experiment and
the proposed analytical model.

This model, as the original Parker et al. model, assumes an
ideal (instantaneous and uniform) energy pulse and disregards
the eventual heat flux from the sample’s side (cylindrical) sur-
face, even if these two assumptions were later dropped in more
refined models [28–30]. Therefore, the same limitations and un-
certainties of the original Parker et al. model, deriving from
these two assumptions, apply also to the present model.

The contribution due to the initial transient of the continuous
cooling process, represented by the term B · tc · fII in Eq. (9),
can be estimated from the calculated cooling rate B and charac-
teristic time tc and from the numerical values of the function fII.
In the reported flash measurements, the B · tc temperature co-
efficient was always lower than 0.1 K (Table 2). Furthermore,
fII(2,1) is lower than 10−3 and fII(5,1) is lower than 10−8

(Fig. 4(b)). Therefore, if a time interval only a few times longer
than tc is allowed between the start of the overall sample cool-
ing process and the flash measurement(s), no significant error
arises from having neglected this contribution in the numerical
interpolation. This condition is safely achieved.

Both standard and non-standard flash measurements must be
referred to an averaged sample temperature, because necessar-
ily different temperatures occur inside the sample at different
times and positions. Whereas in the standard measurements
these temperature differences arise from the pulse transient
only, in the proposed non-standard measurements they arise
also from the overall sample cooling process, both in time,
i.e. B · �t , and in space, i.e. Z. In the present non-standard
measurements, the former were lower or comparable (at the
highest temperatures), and the latter always much lower, than
the temperature increase �T due to the energy pulse (Table 2).
Moreover, the temperature differences arising from the cooling
process are mostly opposite to those due to the pulse transient
and thus the former ones partially cancel the latter. There-
fore the temperature-related uncertainty wasn’t significantly in-
creased in the non-standard measurements, in respect to stan-
dard ones.

A more important uncertainty arises in the proposed model
from the constant surface heat flux boundary condition adopted
in Eq. (1). Because the sample’s cooling physically arises from
a radiative heat transfer process, such a boundary condition is
acceptable only if the surface heat flux variation δE, occur-
ring during a time interval δt comparable to the duration of
a flash measure, is small in respect to the surface heat flux
E itself. Indicative values of |δE|, |E| and |δE/E| calculated
from the results of the numerical simulation are reported in Ta-
ble 3: |E| was calculated as the integral mean heat flux in each
data acquisition period, and |δE| as the difference between the
maximum and minimum instantaneous heat flux values in the
same periods. In the simulated standard measurements |δE/E|
is large, because |E| is initially zero (in the first simulated mea-
surement) or low and then increases due to the pulse-related
temperature rise, but in these cases |E| itself does not signif-
icantly influence the test because it is always low in respect
to the sample’s thermal capacity and to the duration of the
measurement. On the contrary, in the simulated measurements
performed during the cooling process, |E| is sufficiently large
to yield a clear cooling contribution in the thermograph, but
|δE/E| is small (of the order of 1% in most cases), because
the mean sample temperature is substantially higher than the
mean furnace temperature, and thus the temperature variations
are comparatively low. Therefore, the constant heat flux bound-
ary condition is a fair approximation in most cases.

Furthermore, it may be possible to estimate |δE/E| during
the cooling stage without performing a numerical simulation,
by considering the overall (experimental) sample cooling curve
only, even if the temperature of the furnace components in view
of the sample is not known. To this purpose, if the Biot number
associated with the overall cooling process is small (e.g. smaller
than 0.1), as a first approximation and as it regards this over-
all cooling process only, a lumped capacitance model can be
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Table 3
Simulated laser flash measurements

Stage ��T out αout |αin − αout| |(αout/αin) − 1| δE E δE/E Bout �Tout Rout �Tout/Rout
K mm2 s−1 mm2 s−1 % W m−2 W m−2 – K s−1 K mK –

Holding 1134 5.47 0.0287 0.527 34 24 1.452 0.00 1.06 1.87 568
1135 5.45 0.0019 0.034 36 45 0.787 0.01 1.07 0.72 1489
1135 5.45 0.0024 0.043 35 58 0.601 0.01 1.07 0.71 1497

Continuous cooling 1122 5.40 0.0015 0.029 59 1330 0.044 0.23 1.07 0.79 1358
1075 5.26 0.0003 0.005 32 2101 0.015 0.36 1.08 0.68 1592
1024 5.10 0.0002 0.004 25 2048 0.012 0.35 1.10 0.59 1856

972 4.93 0.0018 0.037 21 1794 0.012 0.31 1.11 0.57 1967
917 4.76 0.0021 0.044 18 1482 0.012 0.26 1.13 0.54 2073
878 4.64 0.0025 0.054 16 1271 0.013 0.23 1.14 0.51 2240
830 4.49 0.0012 0.027 16 642 0.025 0.12 1.16 0.55 2117
800 4.40 0.0010 0.024 13 188 0.068 0.03 1.16 0.47 2478

Holding 779 4.33 0.0027 0.062 12 17 0.739 0.00 1.17 0.47 2469
779 4.33 0.0019 0.045 12 25 0.496 0.00 1.17 0.49 2404
780 4.34 0.0018 0.041 12 40 0.316 0.01 1.17 0.49 2390

Input values (in) and values calculated from the simulated thermographs (out). Holding or cooling stage, average temperature ��T out, output thermal diffusivities αout
and differences between input and output values αin and αout, mean calculated heat flux E (in the data acquisition period), calculated heat flux variation δE (in
the same period), heat flux variation ratio δE/E, cooling rate Bout, pulse-related temperature increase �Tout, thermograph interpolation root mean square residual
Rout, effective signal-to-noise ratio �Tout/Rout.
used [7]. For example, in the present experiment, by modeling
the radiative heat transfer with effective surface heat transfer
coefficients [7], and by using the above mentioned estimates
of the sample’s thermophysical properties, this Biot number re-
sults always smaller than 2 ·10−3. From the lumped capacitance
model, it can be obtained:

E ≈ −C · Ṫ
2 · S (16)

and, by a further time derivative,

Ė ≈ −C · T̈
2 · S (17)

where C is the sample’s heat capacity and the heat flux from the
sample’s side surface is neglected. Therefore, if the sample tem-
perature T is observed during the whole cooling process and if
(excluding the isolated pulse effects) Ṫ is always negative and
T̈ is always positive, as it usually happens in radiative cooling
processes (and actually happened in the reported experiment), it
can be concluded that the emissive power E is always positive
and its time derivative Ė is always negative.

Moreover, as noted above, the surface heat flux (i.e., the
emissive power) can be described as:

E = ε · σ · (T 4 − T 4
f

)
(18)

By recalling that Ė is negative, by differentiating Eq. (18), and
because the temperature rate Ṫf of the furnace components in
view of the sample is obviously negative, it results that:

|Ė| = −Ė = −4 · ε · σ · T 3 · Ṫ + 4 · ε · σ · T 3
f · Ṫf

< −4 · ε · σ · T 3 · Ṫ (19)

and finally, by recalling that E is positive and by combining
Eqs. (16) and (19), it results:
∣∣∣∣δEE
∣∣∣∣≈

∣∣∣∣ Ė · δt
E

∣∣∣∣= |Ė|
|E| · δt <

(−4 · ε · σ · T 3 · Ṫ )

(−C · Ṫ /(2 · S))
· δt

= 8 · ε · σ · S · T 3 · δt
C

≡ D (20)

Therefore, the smaller is the parameter D defined in Eq. (20),
the more precise is the adopted analytical model, at least as it
regards the constant surface heat flux hypothesis.

Finally, by substituting the ε/C ratio, as defined in Eq. (14),
into Eq. (20), it results:∣∣∣∣δEE

∣∣∣∣< D = 8 · �T · σ · S · T 3 · δt
Qi

(21)

Therefore, the D parameter can be calculated for each non-
standard flash measurement performed during the sample’s

cooling, by using the average measurement temperature ��T
(as T ), the employed laser pulse energy Qi , the calculated �T

value, and a relevant duration δt .
Physically, D depends mainly upon the sample’s tempera-

ture and is a dimensionless measure of how much the emissive
power E would change in time if the sample would be cooling
by irradiation at the specified temperature, versus a zero ab-
solute temperature ambient (this latter specification is the phys-
ical correspondent of the approximation in Eq. (19)). D does
not actually depend upon if and how a flash measurement is
performed, because the �T/Qi ratio is introduced in Eq. (21)
only as a mean to measure the ε/C ratio, which is a sample’s
own constant. For these reasons, D cannot be employed to esti-
mate |δE/E| in the case of standard measurement. Values of D

obtained at most investigated temperatures during the cooling
stage (Table 2) are lower than 2.5% at the maximum tempera-
ture, and steeply decrease while the temperature is decreased.
In these calculations, the duration of the data acquisition (2.5 s)
was chosen as δt . Notwithstanding the rough approximations
employed, these values (Table 2) are of the same order of mag-
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nitude of the above-mentioned |δE/E| values obtained from
the numerical simulation during the cooling stage (Table 3).

Moreover, for a chosen material and temperature, and by in-
troducing the material’s density ρ and specific heat capacity cp ,
Eq. (20) can be restated as follows:

D = 8 · ε · σ · S · T 3 · δt
ρ · cp · S · L ∝ δt

L
(22)

Because the relevant duration δt of an experiment should be
proportionate to the specimen’s characteristic time tc , and by
using the definition tc = L2/(π2 · α), from Eq. (22) it follows
that:

D ∝ δt

L
∝ tc

L
∝ L (23)

from which it is apparent that, for a given material and tem-
perature, D scales with the sample’s thickness. Therefore the
same model may not be acceptable for samples much thicker
than those employed in this work.

The variation of the sample thickness L, due to the sam-
ple’s thermal expansion and volumic contraction in respect to
its initial (measured) condition, was neglected in the reported
calculations. The thermal diffusivity α is proportional to L2 and
the maximum total linear variation εt is lower than 0.01 [16],
thus the relative error due to the thickness variation is lower
than 2%:
∂α

α
= 2

∂L

L
= 2 · εt < 0.02 (24)

Although the calculated thermal diffusivity could be easily
corrected for the thickness variation, the reported (uncorrected)
values are more consistent with most finite element thermo-
metallurgical models, because these models usually neglect vol-
ume variations.

The root mean square residual R of the interpolation theoret-
ically depends upon both the model’s likelihood and the noise
of the acquired signal. In the present set of experimental mea-
surements, R apparently depends upon the temperature and is
insensitive to whether a measurement was performed during a
holding or cooling stage (Table 2 and Fig. 5).

The overall likelihood of the proposed analytical model,
and particularly the acceptability of the main approximations
included in this model (constant thermophysical properties,
constant-heat-flux boundary condition, ideal pulse), can also
be evaluated by applying the above described data reduction
method to the result of the numerical simulations, that were per-
formed without using such approximations (Table 3 and Fig. 6).
The root mean square residual Rout obtained by fitting the sim-
ulated thermographs (of both standard and non-standard mea-
surements) with the proposed analytical model is lower than
10−3 K, slightly increasing with the temperature. Moreover, the
difference between the diffusivity values obtained from the sim-
ulated thermographs and the corresponding input values (values
of the diffusivity-vs.-temperature curve employed in the sim-
ulation, at the same temperatures) is less than 0.01 mm2 s−1

or 0.2%, (slightly increasing with the temperature in the non-
standard cases). Thus, the adopted analytical model is over-
all satisfying. Nevertheless, the first simulated measurement
Fig. 5. Mean square residual of the numerical interpolation of the experimen-
tal laser flash thermographs, as a function of the temperature. Measurements
performed during the cooling or holding stages.

Fig. 6. Thermal diffusivity as a function of the temperature. Input curve em-
ployed in the numerical simulation, and output values obtained by interpolating
the simulated thermographs with the proposed analytical model.

showed a slightly larger error (R = 1.9 · 10−3 K, thermal dif-
fusivity difference 0.035 mm2 s−1 or 0.65%), and the error was
always larger in the standard simulated measurement than in
those performed during the cooling process. These latter facts
can be correlated to the above-mentioned large δE/E ratios that
occur in the standard measurements (and particularly in the first
one), and to the fact that, in the standard measurements, a slow
temperature decrease occurs after the pulse instant, but not be-
fore. For these reasons, in the standard measurement cases the
present model may be slightly inferior in likelihood in respect
of, for example, the Cape and Lehman model [28], but still sub-
stantially equivalent to the Parker et al. one [22].

By summarizing and comparing the results of the actual and
simulated measurements, it can be stated that the adopted an-
alytical model is coherent with both the standard and the non-
standard flash measurements, at least in respect to the precision
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of the employed measurement apparatus, and that in the exper-
imental cases the residual R is essentially determined by the
instrumental noise, rather than by the model’s likelihood, be-
cause it is always two orders of magnitude larger than the values
obtained in the simulated experiments (that depend on the mod-
el’s likelihood only). Therefore, a more refined model (e.g. a
finite elements one) would not yield a significant advantage in
the interpolation of thermographs obtained with the present ap-
paratus.

Moreover, because the temperature increase �T is the rele-
vant temperature signal, in the experimental measurements the
�T/R ratio can be regarded as a signal-to-noise ratio (this ratio
is higher than 103 in the simulated measurements, Table 3).

Experimental results

During the austenitizing and cooling stages, the measure-
ments performed at the higher temperatures generally showed
a larger dispersion (Fig. 7), probably because they presented a
worse �T/R signal-to-noise ratio (Table 2) due to an higher
noise (R increased approximately from 0.05 to 0.1 K while
increasing the temperature from 755 to 1133 K). The mea-
surements performed during the 755 K holding stage showed
a much smaller dispersion, because �T/R ratios of the order
of 60 were obtained by using higher absorbed pulse energies
and thus higher �T temperature increases.

During the 1133 K holding stage, the measurements per-
formed by keeping the heating system working showed neg-
ligible cooling rates B , thus can be regarded as standard mea-
surements, whereas those performed by switching off the same
system just before the measurement showed significant cooling
rates, thus should be regarded as non-standard measurements.
Nevertheless, the difference between the mean thermal diffu-
sivity values obtained in these two groups of measurements
was comparable to the standard deviation observed inside each

Fig. 7. Thermal diffusivity as a function of the temperature. Measurements
performed during the cooling or holding stages and linear interpolation. Pre-
vious measurements on a low-alloy austenite [31]. Thermal diffusivity of three
austenitic stainless steels with different alloy content.
group. During the 755 K holding stage the differences between
the measurements performed with or without the heating sys-
tem were less evident (Table 2).

The thermal diffusivity of the austenite monotonically de-
creases from about 5.4 · 10−6 m2 s−1 at 1133 K to about
4.3 · 10−6 m2 s−1 at 755 K (Fig. 7). The overall trend of the
austenite thermal diffusivity in the investigated temperature
range (722 to 1135 K) can be described by the following lin-
ear interpolating formula:

α = 1.896 + 3.129 × 10−3T (25)

where α and T are expressed in mm2 s−1 and K, respectively.
This formula (that presents an overall root mean square residual
in respect to the measured points equal to about 0.2 mm2 s−1)
is more precise at the lower end of the investigated tempera-
ture range, because both the uncertainty associated with each
single measurement and the dispersion of the measured points
around the interpolating line increase with the temperature, and
because the tests performed on the Armco iron have shown that
the instrumental apparatus is less precise at the higher investi-
gated temperatures.

Discussion and conclusions

The proposed data-reduction method was used to calculate
the thermal diffusivity from the thermographs of flash experi-
ments performed upon undercooled austenite samples without
prior thermal equilibrium. The results are in reasonable agree-
ment with the standard measurements (at the temperatures at
which the latter could be performed) and the same calculations,
as well as the results of the numerical simulations, prove that the
assumptions used to formulate the underlying analytical model
are acceptable in the examined cases.

The thermal diffusivity of the undercooled austenite, as ob-
tained in carbon or low-alloy steels, was previously measured
by Solter [31] in the 32NiCrMoV12-3 low-alloy grade.11 These
measurements were performed by using the laser flash method
while cooling the specimen from 1273 K to room tempera-
ture, whereas the phase transformation was detected only be-
low 715 K, but the employed experimental and data reduc-
tion procedures were not reported, and, therefore, it is unclear
how the prior thermal equilibrium condition (required by the
standard method) was dealt with. Furthermore, in the exam-
ined temperature range, some stainless steels present a sta-
ble austenitic phase, due to their high alloy (and particularly
Nickel) content, and their thermal diffusivity have been exten-
sively studied by standard methods. In Fig. 7 the present results
are compared with those reported by Solter and with the pre-
viously reported thermal diffusivity of three austenitic stainless
steels with different chromium and nickel content: ISO 1.4970
(or X10NiCrMoTiB15-15), containing 15 wt% Cr and 15 wt%
Ni [32], AISI 310, containing 25 wt% Cr and 20 wt% Ni [33],
and AISI 304, nominally containing 19 wt% Cr and 9 wt%
Ni [34].

11 With the following composition (weigth %): C 0.32, Si 0.14, Mn 0.61, Cr
0.93, Mo 0.46, Ni 2.5.
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The present results are overall consistent with those reported
by Solter. Moreover, the trend of the thermal diffusivity in
respect to the temperature is substantially similar in the low-
alloy undercooled austenite and in the three above-mentioned
austenitic stainless steels, and the thermal diffusivity values of
the low-alloy undercooled austenite are close to those of the less
alloyed austenitic stainless steels.

Particularly at the lower investigated temperatures, the ther-
mal diffusivity of the examined undercooled austenite is signif-
icantly lower than that of the ferritic constituents (i.e. pearlite,
bainite, or martensite) of the same steel [16] and of similar
medium-carbon steels [26,31] at the same temperatures. There-
fore, a model of a steel’s thermal diffusivity, to be employed in a
steel quench simulation, should consider the phase dependence
of this property.
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Appendix A. Analytical solution of Eq. (3)

The analytical solution of Eq. (3) is described hereafter.
The solution for t > 0 can be obtained by using the Laplace

transform method [6,23], whereas the solution for t � 0 is obvi-
ously zero. By applying the unilateral Laplace transform (Lu)

in respect to the variable t , the given equations become:⎛
⎜⎜⎜⎝

ṪIII = α · T ′′
III, x ∈ [0,L]

−k · T ′
III = q · δ(t), x = 0

−k · T ′
III = 0, x = L

TIII = 0, t = 0

⎞
⎟⎟⎟⎠

Lu−→
⎛
⎝ s · θ = α · θ ′′, x ∈ [0,L]

−k · θ ′′ = q, x = 0

−k · θ ′′ = 0, x = L

⎞
⎠ (26)

where s is the complex Laplace variable and θ(s, x) is the
Laplace transform of TIII(t, x).

The solution of Eq. (26) in the Laplace domain is:

θ(s, x)

= q

k · √s/α
· [exp

(−(2 · L − x) ·√s/α
)

+ exp
(−x ·√s/α

)] · 1

1 − exp(−2 · L · √s/α )
(27)

By using the well-known result:

1

1 − y
=

∞∑
n=0

yn, y ∈ (0, 1) (28)

and for suitable s values, Eq. (27) can be restated in the follow-
ing form:
θ(s, x) = q

k · √s/α
· [exp

(−(2 · L − x) ·√s/α
)

+ exp
(−x ·√s/α

)] ·
∞∑

n=0

exp
(−2 · n · L ·√s/α

)

= q

k
·

∞∑
n=0

[
exp(−(2 · (n + 1) · L − x) · √s/α )√

s/α

+ exp(−(2 · n · L + x) · √s/α )√
s/α

]
(29)

Being known [23] that:

Lu

{(
α/(π · t))1/2 · exp

(−β2/(4 · α · t))}
= exp

(−β ·√s/α
)/√

s/α (30)

where β is a real positive number, the inverse Laplace transform
of Eq. (29) is:

TIII(t, x) = q

k
·
(

α

π · t
)1/2

·
∞∑

n=0

[
exp

(
− (2 · (n + 1) · L − x)2

4 · α · t
)

+ exp

(
− (2 · n · L + x)2

4 · α · t
)]

(31)

Finally, by substituting tc = L2/(π2 · α) and reordering, it re-
sults:

TIII(t, x) = q · α
k · L · fIII

(
t

tc
,
x

L

)

fIII(τ,χ) =
√

π

τ
·

∞∑
n=0

[
exp

(
− π2

4 · τ · (2 · (n + 1) − χ
)2
)

+ exp

(
− π2

4 · τ · (2 · n + χ)2
)]

(32)

for t > 0, from which Eq. (7) can readily be obtained by choos-
ing x = L and extending fIII as zero when τ � 0.

Appendix B. Verification of Eq. (11)

The integration of T (t, x), as defined in Eq. (9), in respect to
x, leads to:

�T (t) = 1

L
·

L∫
0

T (t, x)dx

= T0 + 1

L
·

L∫
0

z(x)dx − B · t + �T ·
1∫

0

fIII(τ̃ , χ)dχ

+ B · tc ·
1∫

0

fII(τ,χ)dχ (33)

where τ̃ = (t − t0)/tc and τ = t/tc.
The function z(x) is a polynomial and therefore its integral

is easily calculated; it is:

1

L
·

L∫
z(x)dx = 0 (34)
0
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Moreover, as it regards the integral of fII, by exchanging the
summation and the integral, and calculating the latter, it is ob-
tained:

1∫
0

fII(τ,χ)dχ

= 1

2
·

∞∑
n=1

(−1)n

n2
· exp

(−4 · τ · n2)

·
1∫

0

cos
(
n · π · (2 · χ − 1)

)
dχ

= 1

2
·

∞∑
n=1

(−1)n

n2
· exp

(−4 · τ · n2) · sin(n · π) = 0 (35)

by considering that n is an integer and therefore sin(n · π) is
always zero.

The function fIII was assumed to be zero when τ̃ is negative
or zero, therefore:

1∫
0

fIII(τ̃ , χ)dχ = 0 if [τ̃ � 0] (36)

In the opposite case (positive τ̃ ), by exchanging the summation
and the integral, calculating the integrals of the two Gaussian
curves and simplifying, the following series is obtained:

1∫
0

fIII(τ̃ , χ)dχ

=
√

π

τ
·

∞∑
n=0

[ 1∫
0

exp

(
−π2 · (2 · (n + 1) − χ)2

4 · τ̃
)

dχ

+
1∫

0

exp

(
−π2 · (2 · n + χ)2

4 · τ̃
)

dχ

]

=
∞∑

n=0

[
Erf

(
(n + 1) · π/

√
τ̃
)− Erf

(
n · π/

√
τ̃
)]

if [τ̃ > 0]

(37)

Every partial sum SN of this latter series can be calculated by
splitting the summation,12 renumbering a dummy index and
simplifying, i.e.:

SN =
N∑

n=0

[
Erf

(
(n + 1) · π/

√
τ̃
)− Erf

(
n · π/

√
τ̃
)]

=
N+1∑
m=1

Erf
(
m · π/

√
τ̃
)−

N∑
n=0

Erf
(
n · π/

√
τ̃
)

12 The series itself cannot be split because the two resulting series would di-
verge.
=
N∑

m=1

Erf
(
m · π/

√
τ̃
)+ Erf

(
(N + 1) · π/

√
τ̃
)

− Erf
(
0 · π/

√
τ̃
)−

N∑
n=1

Erf
(
n · π/

√
τ̃
)

= Erf
(
(N + 1) · π/

√
τ̃
)

(38)

Therefore, the sum of the series can be readily obtained as the
limit of the sequence of its own partial sums, i.e.:

1∫
0

fIII(τ̃ , χ)dχ = lim
N→∞SN = lim

N→∞ Erf
(
(N + 1) · π/

√
τ̃
)= 1

if [τ̃ > 0] (39)

By unifying Eqs. (36) and (39), it results that the spatial average
of fIII is the unitary step function:

1∫
0

fIII(τ̃ , χ)dχ = u(τ̃ ) (40)

and finally, Eq. (11) is readily obtained by substituting Eq. (34),
(35) and (40) into Eq. (33).

The same result (Eq. (11)) can be obtained by integrating
Eq. (1) in respect to x. Moreover, Eq. (11) is confirmed by phys-
ical considerations. The spatial average temperature is directly
related to the sample’s internal energy (trough the sample’s heat
capacity) and the latter is the sum of an initial value and of
the time integral of the heat fluxes, therefore the linear term in
Eq. (11) derives from the time integral of the constant cooling
heat flux E, whereas the step term derives from the time inte-
gral of the energy pulse q · δ(t − t0).
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